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1. INTRODUCTION

It is a well-known fact that the non-linearity present in a system leads to jumps in the
frequency} and force}response curves [1]. As shown in Figure 1, the frequency}response
curve of a Du$ng oscillator is bent either to the left or to the right, depending on whether
the type of non-linearity is softening or hardening. The bending of the frequency}response
curve leads to a jump in the response amplitude when the excitation frequency is swept from
left-to-right or right-to-left. The response amplitude increases at a jump-up point and
decreases at a jump-down point. Between the jump points, multiple solutions exist for
a given value of the excitation frequency, and the initial conditions determine which of
these solutions represents the actual response of the system. The jump points of a
frequency}response curve coincide with the turning points of the curve where saddle-node
bifurcations occur. The goal of this letter is to determine the minimum forcing amplitude
that would lead to jumps in the frequency}response curves of single-degree-of-freedom
(s.d.o.f.) non-linear systems, and to also locate the jump-up and jump-down points in the
frequency}response curve when the forcing amplitude is above the minimum value.
Worden [2] and Friswell and Penny [3] computed the bifurcation points of the

frequency}response curve of a Du$ng oscillator with linear damping. They used the
method of harmonic balance to obtain the frequency}response function. To compute the
jump frequencies, Worden [2] set the discriminant of the frequency}response function,
which is a cubic polynomial in the square of the amplitude, equal to zero, while Friswell and
Penny [3] used a numerical approach based on Newton's method. Their "rst order
approximation results agree well with the &&exact'' results. But for systems with higher order
geometric, inertia, and/or damping non-linearities, a more general and simple method of
determining the jump frequencies is required. In this letter, we present two methods based
on the elimination theory of polynomials [4, 5], which can be used to determine both the
critical forcing amplitude as well as the jump frequencies in the case of s.d.o.f.-non-linear
systems. Also, the methods are devoid of convergence problems associated with bad initial
guesses, and have the potential of being applicable to multiple-degree-of-freedom (m.d.o.f.)
non-linear systems [6, 7]. The proposed methods are outlined in the context of
a single-mode response of an externally excited cantilever beam possessing cubic geometric
and inertia non-linearities and linear and quadratic damping.
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.



Figure 1. Typical frequency}response curves of a Du$ng oscillator with (a) softening non-linearity and
(b) hardening non-linearity. } } } indicate unstable solutions and SN refers to a saddle-node bifurcation.
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2. THEORY

2.1. FREQUENCY}RESPONSE FUNCTION

As the cantilever beam constitutes a weakly damped, weakly non-linear system, we use
the method of multiple scales [8] to derive the modulation equations governing the
amplitude and phase of the excited mode of the cantilever beam. In the process of deriving
the modulation equations, we de"ne the following quantities:
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where � is the linear viscous damping factor,�
�
is the nth natural frequency of the beam,� is

the excitation frequency, a
�
is the base acceleration, l is the length of the beam, s is the

arclength, �
�
(s) is the nth mode shape, and cN is the quadratic damping coe$cient.

Seeking a "rst order uniform expansion of the transverse displacement v(s, t) of the beam,
we obtain

v (s, t)+a (t) cos(�t!�)�
�
(s)#2

and the modulation equations governing the amplitude a and phase � of the response are
given by
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where � is the e!ective non-linearity comprising the geometric and inertia non-linearity
contributions, and the overdot indicates di!erentiation with respect to time t. For a detailed
derivation procedure of the modulation equations, we refer the reader to Anderson et al. [9].
Periodic solutions of the beam correspond to the "xed points of equations (1) and (2). To

determine these "xed points, we set the right sides of equations (1) and (2) equal to
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zero. We, thus, obtain the following frequency}response function relating the response
amplitude a and the excitation frequency � (or �):
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where the subscript 1 and the &&!'' sign refer to the left branch of the frequency}response
curve, while the subscript 2 and the &&#'' sign refer to the right branch. Equation (3) can be
rewritten in polynomial form as

F(a, �)"a�#pa�#qa�#ra�#s"0, (4)
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The frequency}response function can also be written as a polynomial function in � as
follows:

F(a, �)"p��#q�#r"0, (5)
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2.2. SYLVESTER RESULTANT

The resultant of two polynomials is de"ned as the product of all of the di!erences
between the roots of the polynomials, and is a polynomial in the coe$cients of the two
polynomials [4]. Consider two polynomials f (x) and g(x) de"ned as

f (x),
�
�
���

a
�
x�, a

�
O0, g (x),

�
�
���

b
�
x�, b

�
O0.

Then, the Sylvester resultant of f (x) and g(x), denoted by R( f, g), is given by [5]:
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A necessary and su$cient condition for f (x) and g (x) to have a common root is that the
resultantR ( f, g) be equal to zero [4]. The discriminant� of a polynomial f (x), of orderm, is
related to the resultant R ( f, f 	 ) in the following manner:

R( f, f 	 )"(!1)
�����
�	��a
�
�,

where a
�
is the coe$cient of the x� term in the polynomial f (x). We know that f (x)"0 has

two equal roots if f (x)"0 and f 	 (x)"0 have a common root, and hence ifR( f, f 	 )"0. We
use this idea to determine the critical forcing amplitude and jump frequencies.

2.3. CRITICAL FORCING AMPLITUDE

For a low excitation amplitude, we do not observe the jump phenomenon and the
frequency}response curve is single valued; that is, for every value of � there is a unique
value of a. But in the case of a large excitation amplitude, we observe jumps, and for a range
of � values there exist multiple values of a for a given value of �, as seen in Figure 1. Let
f
��
denote the critical value of f marking the boundary between the values of f leading to

jumps and those not leading to jumps. The frequency}response curve for f"f
��
has an

in#ection point, which we denote by (�
��
, a

��
), where the frequency}response function

F(a, �
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)"0 has three positive real roots equal to a

��
. Therefore, the derivative of the

frequency}response function with respect to the response amplitude a, denoted by
F	(a, �
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)"0, has two real roots equal to a
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We now have a sextic polynomial equation in the response amplitude at the in#ection point
a
��
. Using the resultant, we basically eliminate �

��
and obtain a polynomial equation in a

��
only. By using equation (4), we can eliminate a

��
and obtain a polynomial equation in �

��
,

but that would involve a more number of computations. Also, in that case spurious
solutions appear while solving for �

��
.

Knowing the b
�
, one can easily compute the value of a

��
numerically. Of the six roots of

S(a
��
)"0, only one turns out to be real and positive. Once we know the value of a

��
,

substituting it into F
 (a, �
��
)"0 gives us the critical excitation frequency �

��
. Using the

values of �
��
and a

��
in equation (4) or (5), we obtain the critical forcing amplitude f

��
.

For the case of linear damping (c"0), a closed-form solution for the critical forcing
amplitude is possible. The corresponding expressions of f

��
, a

��
, and �

��
are as follows:
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where the &&#'' sign is for systems with e!ective hardening non-linearity (i.e., �'0), and the
&&!'' sign is for systems with e!ective softening non-linearity (i.e., �(0).
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2.4. JUMP FREQUENCIES

For f'f
��
, we observe jumps in the frequency}response curve, as seen in Figure 1. At the

jump points, which we denote by (�*, a*), the frequency}response function F(a, �*)"0
has two positive real roots equal to a*, which requires that the resultantR(F,F	) be equal
to zero at those points. Using equation (5), we, thus, obtain a 12th order polynomial
equation in a* as follows:
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where the c
�
are functions of known physical quantities. The values of a* can be easily

computed numerically. Of the 12 roots of S(a* )"0, only two turn out to be real and
positive. Once we know the value of a*, substituting it intoF	(a, �*)"0 gives us the jump
frequency �*. But for each value of a*, we obtain two values of �*, one of which is spurious.
To pin-point the spurious �* solution, we check if F(a, �*)"0 leads to two positive real
roots equal to a*. If it does not, then that particular �* solution is spurious and is discarded.

2.5. GROG BNER BASIS

A GroK bner basis for the polynomials � f
�
, f

�
,2 , f

�
� comprises a set of polynomials

�g
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, g

�
,2, g

�
� that have the same collection of roots as the original polynomials [7]. Like

the Sylvester resultant, the GroK bner basis also can be used to determine the critical forcing
amplitude and jump frequencies. The advantage of using GroK bner bases over resultants is
that we do not obtain any spurious solutions while solving for the jump frequencies �*. But
in general, resultants are more e$cient than GroK bner bases.
To determine the critical forcing amplitude, we use the fact that F	(a, �)"0 and

F
(a, �)"0 at the in#ection point (�
��
, a

��
). We begin by computing a GroK bner basis for the

polynomials F	(a, �) and F
 (a, �), and, thus, obtain two polynomials G
�
and G

�
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also vanish at the in#ection point (�
��
, a

��
), and have a unique structure as we shall see later.
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Equation (8) is identical to equation (6), but now we also have an additional equation
G

�
(�

��
, a

��
)"0. Once the value of a

��
is numerically computed, we substitute it into

equation (9) to obtain the value of �
��
. Like before, substituting the values of a

��
and �

��
into

equation (4) or (5) gives us the critical forcing amplitude f
��
.

To determine the jump frequencies �*, we use the fact thatF (a, �)"0 andF	(a, �)"0
at the jump points (�*, a*). We begin again by computing a GroK bner basis for the
polynomialsF (a, �) andF	(a, �), and, thus, obtain two polynomialsG

�
and G

�
, which also

vanish at the jump points (�*, a* ). Using equation (4) or (5) and the lex order �'a, we
obtain
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where the b
�
and c

�
are functions of known physical quantities. We solve for the values of a*

and �* numerically. But this time, we do not obtain any spurious solutions of �* because of
the unique form of G

�
. In this aspect, the GroK bner basis method can be viewed as

a non-linear version of the Gaussian elimination technique, which is used to solve linear
polynomial equations.

3. RESULTS

Following the procedure described in the previous section, we computed the critical
forcing amplitude f

��
and the jump frequencies �* in the response of the cantilever beam for

a value of f'f
��
. We used the Resultant and Solve functions of MATHEMATICA [10] to

calculate the resultant of two polynomials and to compute roots of polynomials, and for
computing a GroK bner basis for two polynomials, we used the GroebnerBasis function.
Identical solutions are obtained using the resultant and the GroK bner basis methods. The
parameter values used in the calculations are: �

�
"98�, a"!7#10�, �"6#10	�,
Figure 2. Frequency}response curves obtained using (a) f"f
��
and (b) f"8)82. The asterisk in (a) indicates the

in#ection point and the circles in (b) indicate the jump-up and jump-down points.
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�
ds"0)18 and c"200. The critical forcing amplitude is found to be f

��
"0)274 with

�
��
"!0)795 (�

��
"97)747�) and a

��
"9)277�10	�. Using equation (3), we obtain the

frequency}response curve for f"f
��
, which is illustrated in Figure 2(a). The asterisk in

Figure 2(a) denotes the in#ection point (�
��
, a

��
). For a

�
"49 ( f"8)82), the jump

frequencies are found to be �*
	


"!9)199 (�*
	


"95)072�) and �*
��
�

"!36)544
(�*

��
�
"86)368�). The corresponding frequency}response curve is plotted, along with the

computed jump-up and jump-down points, in Figure 2(b).

4. CONCLUSIONS

Knowing the form of the frequency}response function, one can easily and accurately
determine the critical forcing amplitude and jump frequencies of a s.d.o.f.-non-linear system
using the proposed methods. The only requirement being that the frequency}response
function be a polynomial function in a and �. The simple and straightforward methods can
be applied to a variety of systems. Also, the methods have the potential of being applicable
to m.d.o.f. non-linear systems.
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